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ABSTRACT

In this paper we study the dynamic inventory problem in which

amounts of stock ordered at unit prices ck and ck+1 (ck > ck+I) are

delivered, respectively, k and k+l periods later. It is demonstrated

that under suitable cost conditions, the optimal policies are similar to

those of the dynamic inventory problem with a delivery lag of k+l periods,

except for an additional constant stock level up to which it is desired to

order at unit price ck If we assume that ordering decisions are

made in every other period, it is demonstrated that analogous results

are obtainable for the case in which amounts of stock ordered at unit

prices ck, ck+l , and ck+2 (ck > ck+l > ck+Z) are delivered, re-

spectively, k, k+l, and k+2 periods later.

I
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I. INTRODUCTION

In this paper we analyze a dynamic inventory problem in which

different modes of delivery of ordered stock may be achieved by use of

different ordering costs. An example of such a model is the case in

which an amount of stock ordered at a unit price cl is delivered

one period later and another amount ordered at a unit price c 2 (cZ < cI)

is delivered two periods later.

A basic assumption we make in the present model is that any ex-

cess demand is to be backlogged. This is identical to the one made in

[1] for the case of constant delivery lag. Besides the ordering costs,

there are two more costs operative in the present model: a holding cost

depending on the amount of stock at the end of a period and a shortage

cost depending onthe excess amount of demand over available stock dur-

ing the period. The holding and shortage cost functions are taken as

linear functions for the sake of simplicity. It will be seen later that the

results obtained will be readily extended to the case where these two

functions are assumed to be convex increasing. If the stock on hand at

the beginning of a period is x, then the expected operational costs dur-

ing the period, exclusive of ordering costs, are given by

x 0o

f h(x - t) f(t) dt + p(t - x) f(t) dt, x> 0

0 x

L(x) = (1)
00

f p(t - x) f(t) dt , x: 0,

0

The author gratefully acknowledges his indebtedness to Andrew J. Clark.
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where h(. ) and p(. ) are holding and shortage cost functions, respec-

tively, and the demand quantity during the period is represented by a

random variable t with density function f(t). Under the present assump-

tion we have h(x) = h. x and p(x) = p. x, where h and p are unit

holding and shortage costs, respectively.

In Section II we analyze a model in which an amount of stock ordered

at a unit price c 0 is delivered immediately, and another amount ordered

at a unit price c 1 (cI < Co) is delivered one period later. In Section III

we treat the model of Section II under an assumption that the additional

fixed set-up cost is required for any ordering. We also demonstrate that

the results of the preceding models are readily extended to the case where

amounts of stock ordered at unit prices ck and ck+1 (ck > Ck+l), k l 1,

are delivered, respectively, k and k+l periods later. In Section IV we

analyze a model in which amounts of stock orde::ýdatunitprices ck , ck+l

and ck+Z (ck > ck+l > ck+9), k Ž 0, are delivered, respectively, k, k+l,

and k+2 periods later, under an assumption that the ordering decisions

are only made in every other period.
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II. TWO MODES OF DELIVERY UNDER LINEAR ORDERING COSTS

In this section we will analyze the optimal ordering policies of a

dynamic inventory problem in which an amount of stock ordered at a unit

price c 0 is delivered with no delivery lag, and another amount ordered

at a unit price cI (c 1 < cO) is delivered one period later.

Starting with the single period model to prepare for the induction,

it is clear that we have no ordering at unit price cI ' Next, let us des-

ignate by C n(x) the minimum total expected costs for the n period model

when the stock level at the beginning of the initial period is x . If we are

going to order amount z 0 at unit price c 0 in the single period model,

then we have

(Cx) = min c 0 z0 + L(x + 0))
zok )

(2)

= min {c 0 (w - x) + L (w))

where L(x) is defined by (1). To determine the optimal ordering level

X,, we obtain from (2) the following expression:

F 1 (w) = Cow+ L(w) (3)

Since L'(x) is increasing in x , F•(w) is increasing in w, and it

tends to cO + h> 0 as w tends to infinity. On the other hand, we

have Fl(w) = co - p for w - 0. Therefore, if we assume that

co - p < 0, (4)
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then there exists a unique positive x1 such that F, (xl) = 0 . It is

easily seen that we order up to x if x < x 1i, and we order nothing

if x > x1  Cl(x) is accordingly given by

Cl(X) = C0 (X1 - x) + L(x 1 ) , x<

(5)

= L(x) , x x 1 .

We notice that Cl(x) is convex in x, and C•(x)>- cO for all x

We next proceed to the two period model. If we will decide to

order amounts z and z at unit prices cO and c1 , respectively;

then we have

C 2 (x) = min c 0 z 0 + c 1 z 1 + L(x + zo) +
z Ž0 00

zo•OD
zl>0O

a f0 I(x + z+ z t) f (t) dtj (6)

0

where a is the discount factor. If we make substitutions w = x + z,

v = x+ z 0 + z1 ,and c = c - c 1 ,then (6) may be written as

CG(x) = min c(w x) + L(w) + cl(V - x)
v > w Žx x)cv

+ G C1 (v-t) f(t)dtj. (7)

0
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Now let us consider the following minimization:

L (x) = rain (c(w- x) + L(w)j (8)
w '2

Since the right-hand side of (8) is identical to that of (2) except co re-

placed by c, we may immediately conclude that, under assumption (4),

there exists a unique positive •c such that > x1 (since c < co) and

c + L'(x) c - cI + Ll(i) : (9)

It follows that w = x for x < :, and w = x for x ' 5 ; consequently,

,(x) is given by

(10)

= L(x) , x -

Returning to (7) we consider the following cases to accomplish the de-

sired minimization.

Case (a) x Ž

In this case we will have w = x as it has been shown by minimi-

zation of (8), and (7) may be rewritten as

G2 (x) = L(x) + min c(v - x) + Cl(v - t) f(t) dt (11)

0
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Case (b) x <

In this case we will have w = as it has been shown by minimi-

zation of (8), if an additional restriction that v - w does permit w to

assume the value X^ ; that is to say, if v - x Otherwise we must

have w = v < k due to the convexity of L(x) (we may remark here that

this does not necessarily follow if L(x) is not convex). Therefore, we

have:

I. If v>- ,

G,(x) =c(c - x) + L(i) + min <c(v - x)

co

+ 4Cl(v - t)f (t)dtj . (12)

0

co

2. If v<if,

C()= ri §c(v - x) + L(v) + Cm(v - x)

v(cl(vxx)

+ c((v - k) + L (v) - L + a f c 1 (v - xf(t)dt) (13)

0
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If we define A(v) by

A(v) c(v - .c) + L(v) - L(S:), v < Sc,
(14)

then, by use of L(x) and A (v), we may represent expressions (11),

(1Z), and (13) by a single expression

C(x) =L(x)+min rc (v-x)+A(v)

oo+ L Cl(v - t) f(t) dt (15)

It is essential to notice that A(v) is a continuous convex function of v,

since, otherwise, we will find a serious difficulty in achieving the mini-

mization involved in (15).

To determine the optimal ordering level for the two period model,

we obtain from (15) the following quantity:

F 2 (v) = ClV + A(v) + a Cl(v - t) f(t)dt (16)

0

The derivative F•. (v) tends to cI + ah > 0 as v tends to infinity and,

at v= x, it is given by

0o

F•(S) = c + a)l (C - t)f (t)dt (17)

0

Two cases may now be considered, according to the s i gn of F,(k):
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Case (a) F.(x) < 0

Since F 2 (v) is convex in v due to convexity of A(v) and C (v),

there exists a: unique positive x2 such that x2 > x and

Goo

F2(x2)=0 = c1 + c. IC (x, - t)f(t)dt (18)

0

It follows that we havein(15) v = x2 if x< x2 and v=x if x a x2

Therefore, choosing appropriate forms of L(x) and A (v) from (10) and.

(14), respectively, for each x, we obtain from (15)

Cz(x) = c 0 (c- x) + c1 (x, - c) + L(c) + af C 1 (x2 - t)f(t)dt, x<

0

co

= Cl(x, - x) + L(x) + af Cl(x2 - t)f (t)dt , x< X

0

= L(x) + af C(x - t)f(t)dt, x x- . (19)

0

It follows that the optimal policy is to order:

1. for x< x, amount x-x at c 0 and amount x2 -k at cI

2. for i •x<x 2 , amount x2 - x at cI ; (20)

3. for x - x , none.

The derivative of C,(x) is given by

C2(x) - c 0 , x< ýc

C - c + L'(x), x< xz, (21)

- L'(x) + afc, (x - t)f(t)dt X> xz

0
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It is noticed that C0(x) is convex in x, Cl(x) > co for all x, and

CG(x) C (x) for xx x.

Let us next consider an equation

GO

F(x) =c 1 + af g(x -t)f(t)dt= 0 (22)

0

where g(x) is defined by

g(x)= - co, x< , (23)

-- c 1 + L'(x) , x>x.

We remark that g(x) • Cl(x) and g(x) -< C1(x) for all x. As x tends

to infinity F(x) tends to cl(l - a) + ah> 0 ,and F(•) = cI -ac 0 . If

cI- ac 0 2- 0 , then we have F'(x) Ž c1 - ac 0 - 0 from (17) due to the

fact that CG(x) Ž - c 0 for all x. This is contradictory to the assump-

tionofthiscase. Therefore, wemusthave F(x) = cI - ac 0 < 0 , and, since

F(x) is increasing in x, there exists a unique positive x such that

x > • and

co

F(x) = 0 = c + afg(x - t)f (t)dt (24)

0

It follows that X_ x2 since we have

0o

F•(x)= F (x)- F(x) = af( C-(x - t) - g(x - t)}f(t)dt - 0
z0

due to the fact that C,(x) - g(x) for all. x.
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SCase (b) F I(c) Ž 0
fz

We first recall that Fl(x) is given by

F,(x) = c 0 + L'(x) + aJC; (x - t)f(t)dt

0

for x< c. At x= xI we have F(xl) = co + L'(x) -ac 0 = -ac 0 < 0.

Therefore, there exists a unique x2 such that x > x2 >xI and

0o

F2(xz) = 0 = co + L'(xz) + af GC(x' - t)f(t)dt

0L0
By use of this xZ we obtain from (15)

Cz(X) = cO(xz - x) + L(x2 ) + a) CI(xz - t)f(t)dt x< xZ , (25)

0

co

= L(x) + a) Cl(x - t)f (t) dt , x x2

0

It follows that the optimal policy is to order:

1. for x< x 2 , amount x- x at co,

2. for x t x. , none.
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The derivative of CG(x) is given by

G•(x) -- cOx0
10 

(27)

= L'(x) + af C(x - t)f (t)dt, x> x2

0

It is noticed that G2 (x) is convex in x , C'(x) • - co for all x , and

C'1 (x) >- CG(x) for x! x• . It is also remarked that C,(x) Ž g(x) for all x

Let us next consider an equation

F'(x) = c 0 (1 - a) + L'(x)

As x tends to infinity F'(x) tends to c 0 (l - a) + h > 0 , and, at x = Xl,

F'(xl) = c0 (l - a) + L'(xl) = - ac 0 < 0 . Therefore, there exists a unique

k' such that c' > xI and

F'(X') = 0 = co (I - a) + L'(X-') (Z8)

It follows that ^' Ž x. , since we have

F(^ = F2(Xct) - F'(Xc') = ajf(C(X~-1 t) + co) f(t) dt Ž0

0

due to the fact that C•(x) > - co for all x. At x = , F'(x) = co - ac 0 +

L(x^) = cI - ac 0 ; hence, it also follows that x' < x if cI - ac 0 Ž 0 , and

X' > if cI - ac 0 < 0.



PRC R-Z82
12

To complete the analysis of the two period model, let us prove that
Ci (x) CG.(x) for x < x in both cases. We have already noticed that
C(x) > C(x) for x < x. in both cases. For x2 < x we have

CG(x) - CG(x) = - 'fCG'(x - t)f(t)dt

0

Hence, it suffices to show that

0o

fC ( t) f (t) dt <9 0

0

To start with, we have, by use of (23) and (24),

00 X-XX-

-c 1  afg(x - t)f(t)dt = af L'(?c- t)f(t)dt - aciff(t)dt

0 0 0

O3

- acOf f(t)dt

or, x _x

af L'(x- t)f(t)dt - ct0j f(t)dt =- cl + accf f(t)dt (29)

0 x-x

J
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We also have, by use of (5)

Ctf C " (x - t) f(t) dt = af ,L' (x - t) f (t) dt - acof f (t) dt

0o 0x - x

0 x 0 D x 1

= a L'ix - t)f(t)dt - ac 0 f f(t) dt + L'(x - t)f(t)dt

x - 1

+ Qcof f(t) dt

x -x

substituting (29) here, and recalling that L'(x) < - (cO - CY) for x • k

j we obtain

af Ci(x - t)f(t)dt = - c 1 + CLC f(t) dt + ac0 f (t) dt

0 0 x

x -

+ a) L'(x - t)f (t)dt

x-x

x - x-1 x -x1

cI + a•cf f(t)dt + acof f(t)dt - a(c 0 -c,)J f(t)dt

o X-
-x x -•

x - x

= L 1+ f f (t)dt < 0

0
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This establishes the desired result.

We now will briefly analyze the three period model. To start with,

C 3 (x) will be defined by an expression identical to (6) except C1 replaced

by C . This expression will be reduced to an expression identical to (15),

with C1 replaced by CZ, through the identical arguments used in the two

period model based on the cases (a) and (b). Then F 3 (v) will be defined

by an expression identical to F 2 (v) except C1 replaced by CZ If we

had F'(k) < 0, then we have F() < 0 due to the fact that G-(x) Ž C,(x)

for x -< x . We may immediately conclude that there exists a unique x3

such that x3 > and F (x 3 ) = 0. Since we have

OD

FI(x) F'(x)- F,(X 2 ) = Q (C~x2  t) - Cy(X2  )) tf (t) dt •Eý0

0

due to the fact that CG(x) - C'(x) for x-< x , and

ft

0

due to the fact that C'(x) Ž g(x) for all x, we have x z x 3 Žx >_ t .

x and X' uniquely define the optimal policy which is identical to (20)

except x2 replaced by x 3 , and C 3 (x) and C3(x) are given by ex-

pressions identical to (19) and (21), respectively, with x2 and C2 re-

placed by x 3 and C 3 , respectively. It will be noticed that C 3 (x) is

convex in x , C3(x) > g(x)-> - co for all x , and GC(x) Ž GC(x) for x x 3
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If we had Fz(x) > 0 with cI - ac 0 < 0 , then we may have F') < 0

since C,(x) • C'(x) for x • x, or we may still have F3(k) - 0 . The first

case has already been analyzed. If we have cI - ac 0 > 0 , we must have

'(x" ý 0 In the second case we have F'(x ):r F'(x1 ) = - aco < 0 ; hence,

there exists a unique x3 such that x Ž x3 > and F'(x 3 ) = 0. Since we

have

03

F'(x). F'(x)- F'(x) af(cc, x2  t) - CV - t0 f (t)dt •0

and
C3

F' (') = FI(l') - F'' = 1C CZ1(k - t) + c.) f(t)dt Ž 0

0

we have ^' > x 3 > 2 > xI (we may remark that the upper bound i' is

immaterial unless we have c 1 - cLc0 > 0 , since, otherwise, we have
A > ^ ). x3 uniquely determines the optimal policy which is identical to

(26) except x2 replaced by x 3 . C 3 (x) and C•(x) are given by ex-

pressions identical to (25) and (27), respectively, except x2 and C2

replaced by x3 and C3 , respectively. It will be noticed that C 3 (x) is

convex in x, C (x) ; g(x)>- co for all x, and GI(x) ; CI(x) for x < x3 .

It will finally be shown that we have in both cases

0o

C X) - C ) a clfG(x - t) - G(X- t)) f(t)dt < 0

0

for x3 < x x , due to the fact that CG(x) > CG(x) for x < x . Therefore,

itwillfollow that we have C'(x) 2 CI(x) for x •• x
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We now have all the necessary ingredients of an inductive proof,

and we summarize the preceding results as

Theorem 1: For each n Ž 2 there exists a unique positive xn

which, together with X^ determined by (9), uniquely determines the opti-

mal policy for the n period model as follows:

Case A If x n> X, it is optimal to order:

1 for x<xl, amo'unt x-x at co and amount xn X^

at c;

2. for X:-c x< x, amount xn -x at c1

3. for x ;x , none.
n

Case B If xn - ^ , it is optimal to order:
n

1. for x< x , amount x -x at con n
2. for x - x , none.n

Furthermore, the following properties hold:

(i) x is a unique root of an equation

Go

c 1 + A'(v) + Cnf 1 (v - t)f(t)dt = 0

0

where A (v) is defined by (14).

(ii) Case A X > x:

C' (x) co - c 0 < x ,n

S-C + L'(x) x< x< Xn

= L'(x) + aj C' 1 (x - t)f (t)dt x > x

0
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Case B x •x:n

CG(x) = - co, x< xn

OD

= L'(x) + aC' (x-t)f(t)dt x> xf n- I xt n

0

(iii) Cn (x) is a convex function of x and Cn'(x) _> g(x) - co for all x,

where g(x) is defined by (23). The second derivative of Cn (x) exists

everywhere except possibly for x = • and xn where the right-and left-

hand second derivatives exist.

(iv) Case A c1 - ac0 < 0:

x n X n Xn-i n

where x is determined by (24); there also exists a unique i 2 2 such

that x. I x<.

Case B c 1 - ac >0-Z:

x Sx X'^n-l n

where ^' is determined by (28).

(v) c'l(x) - Cn(X) for x- x

We remark that these results are similar to results obtained in

[1] for the dynamic inventory model with constant delivery lag. It may

also be remarked that the above results may be readily extended to the

case in which h(.) and p(-) are assumed to be convex increasing, and

the right-hand side of (1) may be differentiated twice under the integral

signs.
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III. INCLUSION OF FIXED ORDER COSTS

In this section we first consider the identical inventory model of

the preceding section with the exception of a fixed set-up cost K which

we assume to be charged whenever any amount of ordering is made.

Therefore, if we define

K(x)=K , x> 0, (30)

0 x<O,

then the total ordering cost in the present model is given by c 0 z 0 + c 1 zI

+ K(z 0 + zl) when amounts z 0 and z1 are ordered at unit prices z0

and zI , respectively.

An essential concept in the subsequent analysis of this section is

that of K - convexity which has been defined and utilized by Scarf [2] in

proving the optimality of (S, s) policies for the dynamic inventory model

with constant delivery lag (inclusive of no delivery lag). Specifically,

for a given K >- 0 , a function C(x) is said to be K - convex if

K + C(x+ a) - C(x) -_ a (C(x) - C(x- b)) Ž0 (31)

for all x, all positive a, and all positive b smaller than a positive

constant M. It is readily verified that K - convexity has the following

properties [Z, p. 199]

(i) 0 - convexity is equivalent to the ordinary convexity.

(ii) If C(x) is K - convex, then C(x + h) is K - convex for all h.

(iii) If C(x) and D(x) are K- convex and L - convex, respectively,

then AG + BD is (AK + BL) - convex when A and B are positive.

This property may be extended to denumerable sums and integrals.

Returning to our model, we have no ordering at unit price c1 in

the single period, model. Therefore, we have

(x) = min 0 c0 z0 + K(z 0 ) + L(x + z 0 ))
zo>O
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Since this expression is identical to the one in the case of no delivery lag

which has been analyzed by Scarf in [2], we immediately know that the

optimal policy is of (S, s) type and C 1 (x) is K - convex.

Let us now proceed to the n period model, assuming that Cn-I(x)

is K - convex. If we are going to order amounts z and zI at unit

prices c0 and cl , respectively, in this period, then we have

Gn(x) = min c0 z0 + cI zI + K(z 0 + z,) + L(x + z 0 ) +
z 0~ 0
zo0

Zl>O

QJ CnI (x + + z - t)f(t)dtj (32)

0

Making substitutions w = x + z 0 , v = x + z0 + zI , and c = c - cI , as

we did in the previous section, we can rewrite (32) as

If
Cn(x) = min c(w - x) + L (w) + cI(v - x) + K (v - x)

v Žý w ý2 x

(33)

+ C nf C 1 l(V- t)f (t)dtj

0

We now see that (33) may be reduced to

Cnl(x) = t(x) + gn(x) (34)
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where g (x) is given byn

gn(X) = min CI(v - x) + K(v - x) + A (v) + C Cn-l(V - t)f(t)d (35)

0

through the identical arguments applied to reduce (7) to (15) in the two

period model of the previous section. We recall that L(x) and A (v)

are definedby (10) and (14) , respectively, and both are convex functions.

The quantity essential in achieving minimization in (35) is given by

co

Gn(v) = c Iv+ A(v) + aLI Cn-l(v - t) f(t)dt (36)

0

Since Cnl (v) is K - convex, and cIv and A(v) are convex, it is

easy to see from properties (i), (ii), and (iii) above that G n(V) is

K - convex. It then follows that

K + Gn(v + a) - Gn(v) - a Gn (v) Ž2 0
n n n

for all v and all a Ž 0 which, in turn, implies that there exists a unique

pair (Sn Sn) such that S >s G (S ) is the minimum value of Gn(v)n nn n n nn
and K + Gn (S) G Gn (s n Based on this result we obtain from (35)

gn(x) = K - cIx+ G n(S n) , x< sn

(37)
C I x+ Gn(x) , x sn
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The explicit form of Cn(x) now may be determined by use of (10), (14),

(34), (36), and (37).

Case (a) ^< s,n OD

Cn(x) K + c 0 (:c - x) + c ^(S - c) + L(Xc) + Cf _ 1 (S - t)f(t)dt, x < X,
0

= K + c 1 (Sn - x) + L(x) + af Cnf l(S - t)f(t)dt , g x< s

0

(lx) + cf Gnl(x - t)f(t)dt, x> Sn.

0

The optimal policy in this case is to order:

I. for x< c, amount x- x at co, and amount S -n at c

2. for •• x< s , amount S - x at cI; (38)n Yn

3. for x s s none.n'

Case (b) s n < Sn
I Cn(X) --K +c xO• x) c( n -• + L (^) + Cj ._(Sn t)f (t)dt, x <sn

0

Co.

L(x) + Cnf 1 (X - t)f(t)dt x>- s

0

The optimal policy in this case is to order:

1. for x< s n, amount X^ x at c 0 , and amount S n a

2. for x >- s ,none. (39)
n
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Case (c) x c Sn o
Gn(x) = iK+ cO(Sn- x) +L(Sn) +af Cn(Sn- t)f(t)dt~ x <,

0
00

= L(x) + af Cn(x - t) f(t)dt x 2 sCt n-l n

0

The optimal policy in this case is to order:

1. for x< s , amount S - x at c. (

2. for x - s ,none. (40)
n

The final step in the induction is to establish the K - convexity of

Cn(x). Since L(x) is convex, and Cn(x) is given by (34), it suffices to

establish the K - convexity of gn(x) which is expressed in terms of a

K - convex function Gn (x) by (37). But this is exactly what has been

done by Scarf [2, p. 200]. Therefore, this completes the analysis of the

optimal policies in the present model.

Let us next consider the case in which amounts of stock ordered at

unit prices ck and ck+1 , k Ž 1 (ck > Ck+l) , are cielivered, respec-J tively, k and k+l periods later. If amounts zk and zk+l are orderedatk untprcs kan
at unit prices ck and ck+l respectively, in the n period model, then
we have for n > k+l

Cn(x, xx2'...,xk) =min tCkzk + ck+l Zk+l + K(zk + zk+1) + L(x) +Cn(X, Xl• zk ý_ 0CklklZk)

Z k+1 a- 0 (41)

+ CCJn (X+X 1 -t, xt,. , Xk + Zk, zk+l)f(t)dt),

0
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where G n((X,, x1 .t 2 Xk) represents the expected total minimum cost

for the n period model when the stock level at the beginning of the initial

period is x , and x. is the amount of outstanding order to be delivered i1

periods later. It is obvious that there is no ordering in the k period

model. Therefore, if we define L 0 (x) = L(x) , and

(00

Li(x) = c/ Li l(x-t)f(t)dt , i 1 1 , (42)

0

then we have

Ck(X, x z, , xk_l) = L(x) + Ll(x+ xl) + + Lkl(x+ xI

+ .+ _1 ) (43)

We now assume that we have for n> k+l

Cn(x, x.., Xk) = L(x) + L 1 (x) + • + Lk-l(x + x1 +'+ xk_l)+Hn(u) (44)

where u = x+ x1 +' + xk, and

Hn(u) = min {ckzk + ck+l Zk+l + K(zk + zk+l) + Lk(u + zk)
ZkŽ 0

zk+ 1 0 00 (45)

+ /H n-l(u + Zk + Zk+l - t)f(t)dt) .

0
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As a special case, we have for n = k+l

Hk+l (u) min (CkZk+ K(zk) + Lk(u+ Zk)+

The validity of (44) and (45) may be readily verified by a direct sub-

stitution. If we make substitutions u + zk = w , u + zk + Zk+l = v , and

c = ck - Ck+l , then (45) may be rewritten as

Hn(u) = min c(w- u) + Lk(W) + ck+l(v - x) + K(v - u)

v Ž, w - u) L(ww

cO (46)

+ a Hn(v - t)f(t)ddti

0

We notice that (46) is essentiallyidenticalto (33) except L(w) replaced by

Lk(w) which is again convex due to the convexity of L(w). Therefore,

all the arguments used in the analysis of the preceding model are ap-

plicable here, and we may immediately conclude that the optimal policies

in the present model are essentially identical to those of the preceding

model (see (38), (39), and (40)).

Furthermore, if we assume that K(x) =- 0 for all x in (41), then

(41) represents the expected total cost for the n period model in the

case of linear ordering costs. We notice that (46) which was obtained

from (41) is essentially identical to (7) under the assumption K(x) = 0

for all x. Therefore, it may be concluded that the results of Theorem 1

are readily extended to the present model with no fixed cost.
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IV. THREE MODES OF DELIVERY

In this section we consider the case in which amounts of stock

ordered at unit prices ck, ck+1 and ck+Z (ck > Ck+ > ck+Z) are de-

livered, respectively, k , k+l , and k+2 periods later. In order to apply

our technique employed in the preceding sections we assume that order-

ing of stock is only considered in every other period. Under this assump-

tion, if we order amounts z 0 , z 1 , and z at units prices co , c 1 , and

c 2 , respectively, in the n period model, then we have for n • 3

Cn(x) = min (z0 + z1 + z2) + c0z0 + cIZ1 + CzZ2 + L(x + z0) +

z1 > 0(47)

z 2 > 0 + LI(x+ z 0 + z 1 ) + CnZ, 2(X+Z0+Zl + z

where L 1 is defined by (42), and Cn-2, j is similarly defined by

Cn-Z, 0 (x) = Cn_.(x) and

Sn-2,j (x) = ajf C n-.2,j- (x - t)f(t)dt (48)

0

For n = 1 and 2, we have, respectively,

Gl(x) =min - K(zo) + cozo + L(x + (49)
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and

Cz(x). min ifK(Zo + z 1 ) + c 0 Z0 + c 1 zI + L(x + z0 ) + L1 (x + z0 +z 11)j (50)

z >0

If we make substitutions x + z 0 = w , x+ z 0 + z1 = v , x+ z0 + z1 + z = u

c 0 = c 0 - c 1 , and c1 t c 1 - c2 in (47), then (47) may be rewritten as

C(x) min 3 c0(w - x) + L(w) + cI(v - x) + LI(v) + c2 (u - x)

(51)

+ K(u - x) + C ,

We first consider the following minimization:

L(x) = min 0 (w -x) + L(w) (52)

Since (52) is identical to (8), there exdsts a unique positive x such that

co + L'(x)= 0 , and x uniquely determines t(x) . If we recall, at this

point, the technique which was applied to reduce (7) to (15) in Section II,

then it will be readily seen that (51) may be reduced by the same tech-

nique to (53)

Cn(X) = L(x) + min CI(v - x) +A (v) + Ll(v) + c2(u - x)
u u)v

+K(u - x) + C n2 ) (
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where A(v) is given by

A(v)z=Co (v .. ")#+L(v) -L(x)0 v <x",

(54)

=0, vŽx

We notice that A (v) is convex in v

Let us next consider the following minimization:

FJ(x) = minx 1 (v(- x) +A (v) + Li(v)) (55)

It is easily seen that there exists a unique positive root x for the equation

M'(v) = c + A'(v) + L'(v) = 0 (56)

since M'(v) is strictly increasing in v, M'(0+) = cI + c0 + L'(0) + L1(0)

=co - cZ -p- ap< 0 , and M'(v) tendsto c 1 + a h > 0 as v tends to

infinity. It follows that c uniquely determines M(x) as

Mi(x) - cl(x -I ) + A(6) + L (3c) , x < k(,

= A(x) + L(x), xx.

iA(x) is clearly convex in x. If we again apply our technique to the mini-

mization in the right-hand side of (53), then (53) may be further reduced

to (58)
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C n(x) L(x) + li(x) + minxCmn (u -'x) +K(u -x) +A (u)
u x' (58)

+ C - ,* u

where A(u) is given by

A(u) =Cl(U- + A (u) -A (30 + Ll(U) - L(:) , u < x,

(59)
= 0, u _ x.

We again notice that A(u) is convex in u. It is clear from (58) that the

quantity essential in determination of the optimal policy for the n period

model is given by

Gn(u) = cZu + A(u) + Cn-2, Z(u) . (60)

Since (60) is analogous to (36) in Section III, we may anticipate analogous

results in the present model. In fact, if we assume that K(x) = 0 for all

x and x > x , then the following theorem which is analogous to Theorem 1

is seen to be true:

Theorem 2: For each n > 3 there exists a unique positive x n

which, together with x and X, uniquely determines the optimal policy

for the n period model as follows:

Case A If x n> ýc, it is optimal to order:

1. for x<x, amount x-x at co, amount -x at c,

and amount x - kat c2 ;

2. for <• x< k, amount x- xat c 1 , and amount x -

at c.
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3. for xc•x<x, amount x -x at c;nn

4. for x >-x , none.

Case B If ýc • x > x, it is optimal to order:

1. for x<x, amount x- x at co and amount x -x

at c

2. for xc x<x , amount x -x at c 1

3. for x-x , none.

nn
Case C If x n •! x it is optimal to order:

I. for x< x , amount x -x at con n
2. for x >x , none.

n
Furthermore, the following properties hold:

(i) x is a unique root of an equation F1 (u) = 0 where Fn(u) is given byn n

F'(u) = c 0 + V'(u) + 1V(u) +C' (u) , u < xA 01 n-Z,2Z '

= CI + Ll(u) + C' 2 2 (u) x< u< x (61)

= CZ + C' Z(u) u>2 n-z, 2 'u

(ii) Case A x >x:

C -(x) c 0 , x< ,
n - 1I + L'(x), x < x < -5<

= - + L'(x) + L4(x), < x< xn

= L'(x)(x)14(x) + C' (X) X> xSx n - 2, 2 x n

Case B xE x >x:n

C'(x) -c xn
c + L'(x), x< x n< Xn

= L'(x) + L(x) + C' (x) x>X()+Cn- Z, Z (x n
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Case C x •x:

C'(x) = - co, x < xn

= L'(x) + Ll(x) + c' 2(x), x>xn.-2, 2n

(iii) C (x) is a convex function of x , and C'(x) - g(x) > ^(x) Ž - Co

for all x , where k(x) and g(x) are given as follows:

(x) c x<x,
c 1 + L'(x) , x>x

g(x) - c0o, x<x,

= - c 1 + L'(x) , x< x< •,

S-c + L'(x) + L,(x), x> .

The second derivative of C (x) exists everywhere except possibly for

x = x, , and x where the right- and left-hand second derivatives exist.n

(iv) Let us designate by x' , .' , and x the unique roots of the equations

k(x) =c (1 -a + L'(x) + LI(x) = 0, (62)

F'(x) c1 + Ll(x) + i2(x) = 0 , (63)

and

F(x) = cz + g 2 (x) = 0, (64)

respectively, where j.(x) and g2 (x) are defined by k(x) and g(x),

respectively, in the identical way as L2 (x) is defined by L(x) in (42).

Case A c + g x

In this case we have

x n-2-xn •x

where x is determined by (64); there also exist integers i and j such

that i: j , i 4, jŽý3, xi_2 5 <xi , and x, 2 9 x<x. xl3
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Case B C+ +L1(x) 2  < 0 -c 2 + g2 (x)

In this case we have

n-Z n

where X^' is determined by (63); there also exists an integer k such

that k Ž 3 and XkZ• x< xk.

CaseG C 0- c + LI(x) + g?

In this case we have

Xn-2 xn

where x' is determined by (62).

(v) Cn(x) C' 2 (x) for x-X.n-

The results for n = 1 and Z will be readily obtained by use of (49)

and (50). The proof of the above theorem will be similarly constructed

as for Theorem 1, and, therefore, we will omit it. We also remark

that, if we assume k[ < x , similar results as above will'also be obtained.

If K(x) is given by (30), then the essential part of analysis of the

optimal policy is to establish the K - convexity of Gn(u) given by (60).

This may be done inductively as in Section III, and the optimal policies

can be determined. in forms similar to those in Section III (see (38), (39),

and (40)). In the present model there will be more possibilities in the "

form of the optimal policy than in Section III, but we will present no fur-

ther details. Finally we remark that these results may be readily ex--

tended to the case in which we have k 1 as we have seen it in Section III.
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